skip to main content


Search for: All records

Creators/Authors contains: "Mitrovic, S."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Interval scheduling is a basic problem in the theory of algorithms and a classical task in combinatorial optimization. We develop a set of techniques for partitioning and grouping jobs based on their starting and ending times, that enable us to view an instance of interval scheduling on many jobs as a union of multiple interval scheduling instances, each containing only a few jobs. Instantiating these techniques in dynamic and local settings of computation leads to several new results. For (1+ε)-approximation of job scheduling of n jobs on a single machine, we develop a fully dynamic algorithm with O((log n)/ε) update and O(log n) query worst-case time. Further, we design a local computation algorithm that uses only O((log N)/ε) queries when all jobs are length at least 1 and have starting/ending times within [0,N]. Our techniques are also applicable in a setting where jobs have rewards/weights. For this case we design a fully dynamic deterministic algorithm whose worst-case update and query time are poly(log n,1/ε). Equivalently, this is the first algorithm that maintains a (1+ε)-approximation of the maximum independent set of a collection of weighted intervals in poly(log n,1/ε) time updates/queries. This is an exponential improvement in 1/ε over the running time of a randomized algorithm of Henzinger, Neumann, and Wiese [SoCG, 2020], while also removing all dependence on the values of the jobs' starting/ending times and rewards, as well as removing the need for any randomness. We also extend our approaches for interval scheduling on a single machine to examine the setting with M machines. 
    more » « less
  2. We consider online algorithms for the page migration problem that use predictions, potentially imperfect, to improve their performance. The best known online algorithms for this problem, due to Westbrook’94 and Bienkowski et al’17, have competitive ratios strictly bounded away from 1. In contrast, we show that if the algorithm is given a prediction of the input sequence, then it can achieve a competitive ratio that tends to 1 as the prediction error rate tends to 0. Specifically, the competitive ratio is equal to 1+O(q), where q is the prediction error rate. We also design a “fallback option” that ensures that the competitive ratio of the algorithm for any input sequence is at most O(1/q). Our result adds to the recent body of work that uses machine learning to improve the performance of “classic” algorithms. 
    more » « less
  3. Over the past decade, there has been increasing interest in distributed/parallel algorithms for processing large-scale graphs. By now, we have quite fast algorithms---usually sublogarithmic-time and often poly(łogłog n)-time, or even faster---for a number of fundamental graph problems in the massively parallel computation (MPC) model. This model is a widely-adopted theoretical abstraction of MapReduce style settings, where a number of machines communicate in an all-to-all manner to process large-scale data. Contributing to this line of work on MPC graph algorithms, we present poly(łog k) ε poly(łogłog n) round MPC algorithms for computing O(k^1+o(1) )-spanners in the strongly sublinear regime of local memory. To the best of our knowledge, these are the first sublogarithmic-time MPC algorithms for spanner construction. As primary applications of our spanners, we get two important implications, as follows: -For the MPC setting, we get an O(łog^2łog n)-round algorithm for O(łog^1+o(1) n) approximation of all pairs shortest paths (APSP) in the near-linear regime of local memory. To the best of our knowledge, this is the first sublogarithmic-time MPC algorithm for distance approximations. -Our result above also extends to the Congested Clique model of distributed computing, with the same round complexity and approximation guarantee. This gives the first sub-logarithmic algorithm for approximating APSP in weighted graphs in the Congested Clique model. 
    more » « less
  4. null (Ed.)
    We design a Local Computation Algorithm (LCA) for the set cover problem. Given a set system where each set has size at most s and each element is contained in at most t sets, the algorithm reports whether a given set is in some fixed set cover whose expected size is O(log s) times the minimum fractional set cover value. Our algorithm requires sO(log s) tO(log s+log log t)) queries. This result improves upon the application of the reduction of [Parnas and Ron, TCS’07] on the result of [Kuhn et al., SODA’06], which leads to a query complexity of (st) O(log s · log t). To obtain this result, we design a parallel set cover algorithm that admits an efficient simulation in the LCA model by using a sparsification technique introduced in [Ghaffari and Uitto, SODA’19] for the maximal independent set problem. The parallel algorithm adds a random subset of the sets to the solution in a style similar to the PRAM algorithm of [Berger et al., FOCS’89]. However, our algorithm differs in the way that it never revokes its decisions, which results in a fewer number of adaptive rounds. This requires a novel approximation analysis which might be of independent interest. 
    more » « less